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Trend to Equilibrium of Weak Solutions of the 
Boltzmann Equation in a Slab with Diffusive 
Boundary Conditions 
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Recently R. lllner and the author  proved that, under a physically realistic trunca- 
tion on the collision kernel, the Boltzmann equation in the one-dimensional slab 
[0, 1] with general diffusive boundary conditions at 0 and 1 has a global weak 
solution in the traditional sense. Here it is proved that when the Maxwellians 
associated with the boundary conditions at x = 0 and x = 1 are the same Maxwellian 
M,,., then the solution is uniformly bounded and tends to M,. for t --+ oo. 

KEY W O R D S :  Boltzmann equation; kinetic theory; equilibrium. 

1. I N T R O D U C T I O N  

In a recent paper, Cercignani and Illner I1~ proved a new result on the 
initial-boundary value problem for the nonlinear Boltzmann equation in 
the interval f2 = [0, 1 ] in one-dimensional spatial geometry, with general 
diffusive boundary conditions at x = 0 and x = 1. The x, y, and z com- 
ponents of the velocity v e ~3 will be denoted by ~, q, and ~, respectively, 
and the Boltzmann equation reads as follows: 

with 

Of  . ,. Of  
~+~ ~x=Q(f, f )  (1.1) 

Q(f, f)(x, v, t) 

= f f  B(n. (v - v,) ,  Iv - v ,  I )(f~c', - f f , )  sin 0 dO dr dr, (1.2) 
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876 Cercignani 

We have used the notation from refs. 1-4. For  a detailed explanation of the 
structure of the collision term, see refs. 5-7. The angles 0 and r are the 
polar and azimuthal angles of the collision parameter  n e S 2 relative to a 
polar axis in direction V =  v -  v , .  

We assume the same truncations on the collision kernel B as in refs. 4 
and 1, i.e., we suppose that there is an e > 0 such that 

B ( . . . ) = 0  if [ v -v , I  ~<e (1.3a) 

B is bounded (1.3b) 

A third and less serious assumption on B is that the ratio r between 

f u n .  (v - v , ) ]  2 B(n.  (v - v*), I v -  v ,  l) dn 

and 

Iv-v, 12 fsB(n.(v-v*), Iv-v,I)dn 

is bounded from below. 
The assumption (1.3a) can be summarized as saying that "collisions 

with small relative speed are disregarded" and is therefore physically more 
reasonable than the assumptions made in ref. 8. 

For  x e at2, i.e., x e { 0, 1 }, and co = ( - 1)", we impose boundary 
conditions 

R(v'---, v; x) ICI f (x ,  v', t) dr' (1.4) I~1 f (x ,  v, t )= ,~<o 

where ~ > 0 for x = 0 and ~ < 0 for x = 1. The notation is the same as in 
ref. 1 and consistent with that in ref. 5; in particular, ~' denotes the x com- 
ponent of v'. In ref. 9, Eq. (1.4) is written more compactly as 

f+ =K(.;x) f_ (1.5) 

where the indices + and - indicate that f i s  restricted to in- and outgoing 
velocities, respectively, and the kernel of the integral operator  K is given by 

K(v'~v;x)=R(v'~v;x)l~ (1.6) 

(As in refs. 9 and 1, we use K to denote both the operator  and its kernel.) 
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Finally, we have an initial value f(x, v, 0)=fo(x ,  v), and we shall 
assume that fo e Ll+( [0, 1 ] • 9t 3) with the normalization 

II fodx ,iv= l (1.7) 

The objective of ref. 1 was to show that under reasonable assumptions 
on the diffuse boundary condition (1.4), and with the truncations on the 
collision kernel B made in (1.3), the initial-boundary value problem for 
the Boltzmann equation has a global weak solution in the usual sense. The 
main step in ref. 1 was a proof that the gain and loss terms of the collision 
term Q(f, f), which we shall henceforth abbreviate as G(f, f )  and f L ( f ) ,  
are in L1([0, 1] x 0t3x [0, T]) for any positive time T > 0 .  Cercignani and 
Illner ~1) also showed that the boundary conditions are satisfied as i~lentitie, s 
in the weak sense, and obtained uniform bounds on the second moment 
(the kinetic energy) o f f .  

The assumptions on the boundary kernels R(v'~ v; x) here are the. 
same as in ref. 1 and are largely identical to those made in ref. 9. Specifi- 
cally, we request that 

R>~0 (1.8a) 

fr R(v' ~ v; x) dv = 1 ( l . 8 b )  
r  

(mass conservation) 

3C1 > 0  such that leo,>0 R(v'~v;x) I~l dv>~C~ (1.8c) 

("spreading condition"), and 

3C2>0 such that fr v2dv~C2 (1.8d) 

("energy condition"). 
These cOnditions are similar to conditions (Ko)-(K3) in ref. 9 and 

exclude, as already pointed out in refs. 9 and 1, specular and reverse 
reflection. 

Finally, in ref. 1, at variance with ref. 9, but in agreement with ref. 10 
(where an extension to moving boundaries was also considered), it was 
required that there are two boundary Maxwellians M0 (associated with 
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x = 0 )  and M~ (associated with x =  1) which satisfy the boundary condi- 
tions at x = 0 and x = 1, respectively, i.e., 

. fe R(v' --* v; x) Mx(v') WI dr' I~1 M~.(v)= ,o~<o (1.8e) 

This condition is trivially satisfied for Maxwellian diffuse reflection. 
The identities (l.Se) holding at x = 0 and x = I permit the use of the 

entropy theorem for the situation at hand. 
In this paper, we shall restrict to the case when Mo = M~ = M,,. are the 

same Maxwellian M,,.(v)= e x p ( - f l  Iv[2), i.e., we assume 

ICI M..(v) = fe'~<o R(v' --* v; x) Mw(v') IC'I dr' (1.8e) 

at both x = 0 a n d  x = 1, and study the asymptotic trend of the solution for 
I--oo(3. 

2. A PRIORI ESTIMATES 

We now set out to prove the crucial estimates for the solution of the 
initial-boundary value problem and for the collision term. It is safe to 
assume that we deal with a sufficiently regular solution of the problem, 
because this can always be enforced by truncating the collision kernel and 
modifying the collision terms in the way described in earlier work, in par- 
ticular in ref. 7. If we obtain strong enough bounds on the solutions of such 
truncated problems, we can then extract a subsequence converging to a 
renormalized solution in the sense of DiPerna and Lions; and the bounds 
which we do get actually guarantee that this solution is then a solution in 
the ordinary weak sense. Details of the limit process are given in Section 4. 

In order to deal with the existence theorem in a slab at rest, with the 
two boundaries at the same temperature, it is convenient to remark that 
there is an absolute Maxwellian naturally associated with the problem, i.e., 
the Maxwellian M,,. introduced at the end of the previous section. 

A key tool is an inequality first proved by Darroz6s and Guiraud t ~  
(see also ref. 4 or 6), which in itself is a consequence of Jensen's inequality 
and is based on (l.8e); it says that 

f~flogfdv+fl,,.f~ Ivl2fd~<~O (a.e. in t and x = 0 ,  1) (2.1) 
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Then the modified H-functional 

H= f f log f dv dx +/3 f Iv] z f dv dx (2.2) 

will decrease in time, as a consequence of the Boltzmann equation and 
inequality (2.1). Thus H is bounded if bounded initially. 

Let us divide the subset of [0, 1 ] x 9t 3 where f <  1 into two subsets 
d +- = {(x, v): +_log f <  "+fly2~2)}. Then [since - - f l o g  f i s  a growing func- 
tion in (0, e - ' )  and less thanfforf>e -~] 

and in A -  

--fa+ f l o g f  dv dx 

<~ f f dv dx + fl f v2 exp( -~v2/2) dv dx <~ C (2.3) 

- f~_  f l o g  f dv dx <<. (,8/2) f v2: dv dx (2.4) 

Then Eq. (2.2) implies that both I f l logf ldvdx and I [vl2fdvdx are 
separately bounded in terms of the initial data. It is then easy to prove that 
the mass and entropy relations take on the following form: 

I f( ' '  t)dv d r =  f f(., O) dvdx (2.5) 

f f f logf ( . , t )  dvdx+fl [vl2 f( . , t)  dvdx+ e(f)(.,s)dvdxds 

~< ; f log f (  ., 0) dvdx+fl f [v[2f(-, 0) dv dx (2.6) 

where 

,(:)(x. o. ,)= fs+ 

x B ( n .  (v  - v , ) ,  [v - -  v ,  [) dv, dn (2 .7 )  

These estimates were first discussed by Hamdache, (~2) then by Arkeryd and 
Cercignani ~13~ in the case of a general vessel (see also ref. 6). 
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We need some additional notation, consistent with ref. 1. For each 
x~[0 ,  1] and t~>0, let 

p(x, t )= f f ( x ,  v, t) dv 

m(t) = ; p(x, t) dx 

j(x, t) = I ~f(x, v, t) do (2.8) 

f 
x p(x, t) = j ~-'f(. , v, t) dv 

q(x, t) = ~ #v2f(x, v, t) dv 

We call p the mass density, m(t) the total mass, j the mass flux (or momen- 
tum) in the x direction, p the momentum flux, and q the energy flux. At the 
boundaries we will need the ingoing and outgoing parts of these quantities. 
We use the abbreviations 

P+ =Ir fdv ,  P -  =Ir f d v  

J + = fr # f  dr, J -  = fr <o l#l f dv 

(2.9) 

etc., such that p = p +  + p _ , j = j + - j _ ,  p = p +  + p _ ,  and q = q + - q _ .  
Following the extension of the work of Bony 1'4) to the continuous 

velocity case, in refs. 1-4 the following functional was considered: 

.~.'< y 

where the first double integral is over the triangle 0 ~<x< y~< 1; they 
proved the relation 

fo r ~ f~ f~ (~-~ , ) - '  f (x ,  v , ,  t ) f ( x ,  v, t)dv do, dx dt 

= I [ f ] ( O ) -  I [ f ] (  r)  

+ p(O,t) p (x , t )dx+p(1 ,  t) p(x,t)dx dt (2.10) 
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and showed that the left-hand side of (2.10) is bounded for any finite time 
interval, though it may grow exponentially in time. 

As remarked in ref. 1, boundedness of the left-hand side of (2.10) 
follows if we can obtain bounds on 

f~ j• f~p(O,t)dt, I~p(1, t)dt 

Such bounds were obtained in ref. 1 by a series of estimates. Here we 
shall need much less; in fact we already know that the energy integral 
E=j[v[2fdvdx is bounded uniformly in time and so is the mass 
[rn(t) = m(0)=  1 ]. Then by an elementary inequality, for every e > 0 there 
is a constant C(e)> 0 such that whenever ( >  0, 

~ <  C(e) +e~ 2 (2.11) 

Therefore, we have an estimate 

;o +o +<"+' ~  
<~ C(e) + ~E (2.12) 

I �9 and likewise for JoJ-(+,  t) dx. 
We recall now an estimate derived in ref. 1: 

f • p ( 1 ,  z) dr + I~p(0, r) dr 

<...CIoE(r) dr+C (j+ +j_)(x,t)dx 

1 

+ C fo (j+ +j_)(x, O)dx (2.13) 

This estimate shows that the last estimates that we needed, i.e., the uniform 
boundedness of ~p (1 ,  r) dr and J~p(0, r) dr, also follow because we have 
already shown that it holds for the terms in the right-hand side. We have 
thus proved the following result. 

L e m m a  2.1. If f is a sufficiently smooth solution of the initial- 
boundary value problem given by (1.1) and (1.4) with initial value fo, then 

E(t), f~(p(1, r)+p(O,r))dz, I~ (j+ +j_)(x,t)dx 
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and 

-uIf -u I"l -v-,f f, (~__ ~,)2 f (x ,  V,, r ) f (x ,  v, r )dv dr, dx dr 

are uniformly bounded in time in terms of the initial data. 

Our objective now is to show that the collision terms themselves 
remain bounded. The method we employ to this end is the same as in 
refs. 2--4. 

Following largely the notation of ref. 2, let 

dp = sin O dO dC dv , dv dx 

and, for 0~<r~  T, 

A(r, T ) = f  B(n.(v--v,), Iv-  v, I) 
Jt O, 1] x ~ 6 x  $2 x [r, T] 

x f(x,  v, t) f (x ,  v , ,  t) dlt dt 

Lemma 2.2. If the solution of the initial-boundary value problem 
for (1.1), (1.4) exists as a classical solution for t a (0, c~), and if the initial 
value fo has a finite H-functional H [ f o ]  and finite energy E ( 0 ) =  
~ ~ v2fo(x, v)dv dx, then there is a constant K (depending on the initial 
data and e) such that 

A(r, T ) ~ K  (2.14) 

The proof of Lemma 2.2 is a simple consequence of the next two 
lemmas. 

Lemma 2.3. 

Then 

Let u t be the x component of the bulk velocity 

I C f  dr 
u l -  i f  d~ 

(2.15) 

- u l )  f (x ,  v, t) f (x ,  v, ,  t) dxd tdvdv ,  < K  o 
3 x ~.R3 x [0. T] x'iR 

(2.16) 

where Ko is a constant, which only depends on the initial data. In fact, the 
integral in (2.16) is nothing else than the integral in Lemma 2.1 (except for 
a factor 2) suitably rearranged. It is enough to expand the squares in both 
integrals and replace ~ ~f  d~ by u 1 ~ f d~. 
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We remark that the main difference with respect to ref. 1 is that we 
have constants in our estimates in place of functions which may grow 
exponentially in time. Then we can copy the proofs there, with the dif- 
ference that constants will not depend on the time interval. We obtain the 
following result. 

Lemma 2.4. Under the assumptions made in (1.3) 

f,~ Iv-ul2 f(x,  t ) f (x ,  t) V~ O , ,  
~3 x'.R3 x $2 x [0, T] xg~ 

x B(n. ( v - v , ) ,  Iv-v,I)dtdxdvdw, dn<Ko (2.17) 

where Ko is a constant, which only depends on the initial data. 

Lemma 2.5. Under the assumptions of Lemma 2.3, we have, for 
smooth solutions 

f,~,• Iv- 12 f(x ,  v, t) f (x,  v, ,  t) O, 
9~3 x S2x [0. T] • 'Jl 

xB(n .  ( v - v , ) ,  I v -  v,[)  dp dt < Ko (2.18) 

where K o is the same constant as in Lemma 2.4. 
Lemma 2.2 now follows thanks to (2.18) and the fact that B(., .) is 

zero for I v - v . I  ~<e. Then we have 

fm f(x,  t) f (x,  t) V, V,~ 
3 x ~.R3 x $2 x [0, T ]  x 9] 

xB(n.(v-v,), ]v-v,I)dtdvdvdv, dn<Ko/e 2 (2.19) 

3. EXISTENCE OF WEAK SOLUTIONS AND TREND TO 
EQUILIBRIUM 

As in re[ 1, the estimates from Sections 2 imply the existence of a 
global weak solution for the initial-boundary value problem. This can be 
stated in the form of a theorem' as follows. 

Theorem 3.1. Let f0~L~([0 ,  1] X~ 3) be such that 

I fo( . )( l  + Ix[2+ [vl 2) d v d x <  oo 

faro [ln f0(.)[ dvdx< 0o 
(3.1) 
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Also assume that the collision kernel B and the boundary conditions 
satisfy the conditions made in Section 1. Then there is a weak solution 
f (x ,v , t )  of the initial-boundary value problem (1.1), (1.4) such that 
feC(9t+,L~([O, 1] x9t3)), f ( - , 0 ) = f o .  This solution also satisfies the 
boundary conditions (1.4) a.e. 

Proof. See ref. 1. 

We shall now deal with the asymptotic trend for t ---, oo. Discussions of 
equilibrium states in kinetic theory are as old as the theory itself; actually 
these states were discussed even before the basic evolution equation of the 
theory, i.e., the Boltzmann equation, was formulated. The recent work on 
the mathematical aspects of kinetic theory has led to new results on this 
problem as well. 

We can conjecture that the solution will tend asymptotically in time 
toward the nondrifting Maxwellian M,.(v). A proof of this is provided by 
the following. 

Theorem 3.2. Let f be a solution of the initial boundary value 
problem (1.1), (1.4). Then, when t tends to infinity, f ( . , . ,  t) converges 
strongly to the global Maxwellian n0M,., where the constant factor no is 
uniquely fixed by mass conservation. 

Remark.  The fact that the weak limit is a Maxwellian was discussed 
by Desvillettes (~5) and Cercignani (~6) (see also ref. 6), starting from a 
remark by DiPerna and Lions. (171 Subsequently Arkeryd (~81 proved that f 
actually tends to a Maxwellian in a strong sense for a periodic box, but his 
argument works in other cases as well; his proof uses techniques of non- 
standard analysis and, as such, is outside the scope of this paper. Then 
Lions (]gJ obtained the same result without resorting to nonstandard 
analysis. Here we shall follow the approach of ref. 19. The main differences 
are: (a) his assumption that B > 0  a.e. is not true in our case; (b) the 
Maxwellian will be uniquely determined. 

We also point out that recently Arkeryd and Nouri 12~ have sketched 
a proof of the fact that for boundary conditions satisfying the restriction of 
ref. 9 and B >  0, the Maxwellian is uniquely determined (for renormalized 
solutions). This had already been pointed out for the weak limit in ref. 16 
(see also ref. 6). 

Proof. It is enough to show that for every sequence t,, tending to oe 
there exists a subsequence t,,,. such that f,,,.(x, v, t )=f(x ,v ,  t+t,,k) con- 
verges in L~((0, 1)x  9t3x [0, T])  to noM,. for any T > 0 .  The weak con- 
vergence of this sequence follows from the uniform boundedness of mass, 
energy, and entropy. 
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Thus f,,(x, v, t) = f ( x ,  v, t + t,) is weakly compact in L~(s x 9t3 x 
[0, T]) for any sequence t,, of nonnegative numbers and any T>0 .  If 
t,,---, co, then there exist a subsequence t,, k and a renormalized solution 
M(x ,v , t )  in L l (g2xg t3x[0 ,  T]) such that f ,k converges weakly to 
M(x, v, t) in LJ(12 x 9t~x [0, T]) for any T > 0 ;  in addition, the gain term 
Q+(f , ,  f , )  converges a.e. to Q+(M, M). In order to prove that M is a 
Maxwellian, we remark that, since the integral jj e( f )  dv dt is given by (2,7) 
is finite, then 

f f fof f  r+,,,k I f ( x ,  V', t) f (x ,  V,, t) -- f ( x ,  V, t) f ( x ,  V,, t)] 
in k 3 2 3 

v, t ) f ( x ,  v . ,  t) 

x B ( n . ( v - v , ) , l v - v , I ) d / t d t - - * O  ( k ~ o o )  

and thus 

1 f , ,&,  v', t) f , ,&,  v, ,  t) 
--f,,k(X, V, t) f,,~(X, V,, t)] og f,,k(X ' V, t) f,,k.(X, V,, t) 

x B ( n . ( v - v , ) , l v - v , l ) d l J d t ~ O  ( k ~ o o )  (3.1) 

Now, according to an argument by Di Perna and Lions ~17) (see also ref. 6), 
we can pass to the limit and obtain 

r 1 [M(x,  v,  t) M(x, v , ,  
3 2 3 

J M(x, v', t) M(x,  v , ,  t) 
x log B(n. (v - v.), }v - v. 1) dlu dt = 0 

M(x, v, t) M(x, v , ,  t) 

This implies 

(3.2) 

M(x, v', t) M(x, v , ,  t) = M(x, v, t) M(x, v . ,  t) 

(a.e. in v . , n , x , v . , t  for ]v -v , l>~e)  (3.3) 

Here we have the unusual restriction on the relative speed. We use, 
however, the fact that one can use local arguments (in v, v,)  to deduce 
that M(x, v, t) is a local (in x and t) Maxwellian. This was clear to 

822/84/3.-4-36 
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Boltzmann ~2~-23) for twice-differentiable functions and has been extended to 
the case when f is only assumed to be a distribution by Wennberg t24) Then 
we conclude that M(x, v, t) is a local Maxwellian. 

But we have for all K > 1 

[ f',,k f ' ,  , - -  f ~k ' - f  "* ] 

+1__1__ 
~< (K--  1 ) f,,k, f~k In K [f"k(x' v', t) f,,k(X, V., t) 

-- f,,k(X, V, t) f~k(X, V., /)] log f 'e(x '  
o,, t) f.~(x, u;,  t) 

f,k(X, V , - 0 ~  ~.i-~ (3.4) 

Then, since e(f,,~.) converges to 0 a.e. and Q+(f,,k'f',k) converges to 
Q+(M, M) a.e., we deduce that the loss term Q-(f,,k, f"k) converges a.e. to 
Q-(M, M). Now, the loss term is of the formfL(f), where Lfis a convolu- 
tion product in velocity space. Then f,,kL(f,k)--' ML(M) a.e.. Then either 
PM is zero, in which case f,k converges strongly to zero (a.e. in v), or is 
nonzero. In the second case L(M) is also nonzero and if we let 
u,,k=L(f,,k)/L(M), we have that U,,k-* 1 a.e. (by the averaging lemma). 
Then since f,,kU,, tends to M(x, v, t) a.e., we conclude that f,,k ~ M a.e. 

But M(x, v, t) must be a (renormalized and hence weak) solution of 
the Boltzmann equation, or, since the collision term vanishes, 

OM 03"1= 0 
0---[ +~ Ox (3.5) 

In addition M must satisfy ~ the boundary condition (1.1). 
Thus the solutions of the Boltzmann equation in a slab with the 

boundary conditions (I.1) tend (in the case of a boundary at constant tem- 
perature) to Maxwellians satisfying the free transport equation (3.5). These 
Maxwellians have been well known since Boltzmann and are discussed, 
e.g., in Chapter III of ref. 6. Now if we specialize this general solution to 
the case when M depends on just the first component of r and impose the 
condition that M(x,., t) is an L 1 function for any t>~0, we see that M is 
a Maxwellian with no drift and constant temperature; this immediately 
implies that M is a uniform Maxwellian, which must coincide with M,. 
(which is an absolute nondrifting Maxwellian) except for a factor, which is 
fixed by mass conservation. Thus we have proved Theorem 3.2. 

5. R E M A R K S  

The result that the solution of the Boltzmann equation converges as 
t--* oo strongly in LI[0, 1] to a space-homogeneous, time-independent 
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Maxwellian M,,. whenever the latter identically satisfies the boundary con- 
ditions at each boundary point is a time-honored conjecture. Here we have 
proved that this is the case for the weak solutions with a truncated kernel 
of ref. 1. 

If M 0 :~M 1 , it is not even clear whether a steady limit exists to which 
our solution can converge. The existence of steady solutions for certain 
boundary-value problems was proved (under more restrictive and physi- 
cally unrealistic truncations on the collision kernel) in ref. 25. However, 
virtually nothing is known about the uniqueness and stability of these 
solutions. 
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